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Abstract
The π+Σ+, π+Ξ0, K+p, K+n, K0Σ+, and K0Ξ0 scattering lengths are calculated in mixed-action

Lattice QCD with domain-wall valence quarks on the asqtad-improved coarse MILC configurations

at four light-quark masses, and at two light-quark masses on the fine MILC configurations. Heavy

Baryon Chiral Perturbation Theory with two and three flavors of light quarks is used to perform

the chiral extrapolations. We find no convergence for the kaon-baryon processes in the three-flavor

chiral expansion. Using the two-flavor chiral expansion, we find aπ+Σ+ = −0.197 ± 0.017 fm, and

aπ+Ξ0 = −0.098 ± 0.017 fm, where the comprehensive error includes statistical and systematic

uncertainties.
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I. INTRODUCTION

Lattice QCD calculations of meson-meson interactions have yielded predictions for physical
scattering lengths at the few percent level [1–3]. Several reasons underlie this striking ac-
curacy. Firstly, at the level of the lattice calculation, Euclidean-space correlation functions
involving pseudoscalar mesons have signals that do not degrade, or only slowly degrade
with time, and therefore, highly accurate fits of both single- and multi-meson properties
are possible with currently available supercomputer resources. Indeed recent calculations
have been performed with up to twelve mesons interacting on a lattice [4, 5] with no ap-
preciable degradation of the signal with time. Secondly, and perhaps more importantly,
QCD correlation functions with Goldstone bosons on external lines are subject to powerful
chiral symmetry constraints which play an essential role in extrapolating the lattice data to
the physical quark masses, as well as to the infinite volume and continuum limits. Chiral
perturbation theory (χ-PT) is the optimal method for implementing QCD constraints due
to chiral symmetry and in essence provides an expansion of low-energy S-matrix elements
in quark masses and powers of momentum [6].

By contrast with the purely mesonic sector, recent studies of baryon-baryon interactions,
the paradigmatic nuclear physics process, have demonstrated the fundamental difficulty
faced in making predictions for baryons and their interactions [7, 8]. Unlike the mesons,
correlation functions involving baryons suffer an exponential degradation at large times 1,
and therefore pose a fundamentally different kind of challenge in extracting signal from
data [10]. Furthermore, while baryon interactions are constrained by QCD symmetries like
chiral symmetry, the constraints are not nearly as powerful as when there is at least one
pion or kaon in the initial or final state. For instance, there is no expectation that the
baryon-baryon scattering lengths vanish in the chiral limit as they do in the purely mesonic
sector. Moreover, in nucleon-nucleon scattering, the s-wave interactions are enhanced due to
proximity to a non-trivial ultraviolet fixed point of the renormalization group, which drives
the scattering lengths to infinity, thus rendering the effective field theory description of the
interaction highly non-perturbative [11].

Given the contrast in difficulty between the purely mesonic and purely baryonic sectors
described above, it is clearly of great interest to perform a lattice QCD investigation of the
simplest scattering process involving at least one baryon: meson-baryon scattering. While
pion-nucleon scattering is the best studied process, both theoretically and experimentally,
its determination on the lattice involves so-called annihilation diagrams, which are very
expensive and are only presently being studied in a few simple cases [12]. Combining the
lowest-lying SU(3) meson and baryon octets, one can form six meson-baryon elastic scat-
tering processes that do not involve annihilation diagrams. Four of these involve kaons and
therefore are, in principle, amenable to an SU(3) heavy-baryon χ-PT (HBχ-PT) analysis [13]
for extrapolation. The remaining two processes involve pions interacting with hyperons and
therefore can be analyzed in conjunction with the kaon processes in SU(3) HBχ-PT, or
independently using SU(2) HBχ-PT.

Meson-baryon scattering has been developed to several non-trivial orders in the SU(3)
HBχ-PT expansion in Refs. [14, 15], extending earlier work on kaon-nucleon scattering

1 A recent high-statistics study of baryon correlation functions on anisotropic clover lattices has found

that the exponential decay with time of the signal occurs only asymptotically in time, and therefore the

signal/noise problem in baryon correlation functions is not nearly as severe as previously thought [9].
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in Ref. [16]. A very-recent paper [17] has reconsidered the SU(3) HBχ-PT results using
a different regularization scheme, and also derived results for pion-hyperon scattering in
the SU(2) HBχ-PT expansion. As all of these works make clear, given the paucity of
experimental data, it is very difficulty to assess the convergence of the chiral expansion in the
three-flavor case, and there is no experimental data which would allow one to consider pion-
hyperon scattering separately in the two-flavor expansion. A lattice calculation of meson-
baryon scattering analyzed using χ-PT is therefore useful not only in making predictions
for low-energy scattering at the physical point, but also for assessing the convergence of the
chiral expansion for a range of quark masses at which present-day lattice calculations are
being performed.

Meson-baryon scattering is also of interest for several indirect reasons. The kaon-nucleon
interactions are important for the description of kaon condensation in the interior of neutron
stars [18], and meson-baryon interactions are essential input in determining the final-state
interactions of various decays that are interesting for standard-model phenomenology (See
Ref. [19] for an example.). Finally, in determining baryon excited states on the lattice, it
is clear that the energy levels that map to meson-baryon scattering on the lattice must be
fully understood before any progress can be made regarding single-particle excitations.

The experimental input to existing χ-PT analyses of meson-baryon scattering is exten-
sively discussed in Refs. [14–17]. Threshold pion-nucleon scattering information is taken
from experiments with pionic hydrogen and deuterium [20, 21], and the kaon-nucleon scat-
tering lengths are taken from model-dependent extractions from kaon-nucleon scattering
data [22]. There is essentially no experimental information available on the pion-hyperon
and kaon-hyperon scattering lengths. There have been two quenched lattice QCD studies
of meson-baryon scattering parameters: the pioneering work of Ref. [23] calculated pion-
nucleon and kaon-nucleon scattering lengths at heavy pion masses without any serious at-
tempt to extrapolate to the physical point, and Ref. [24] calculated the I = 1 KN scattering
length and found a result consistent with the current algebra prediction.

In this work we calculate the lowest-lying energy levels for the six meson-baryon processes
that have no annihilation diagrams: π+Σ+, π+Ξ0, K+p, K+n, K0Σ+, and K0Ξ0 in a mixed-
action Lattice QCD calculation with domain-wall valence quarks on the asqtad-improved
coarse MILC configurations with b ∼ 0.125 fm at four light-quark masses (mπ ∼ 291, 352,
491 and 591 MeV), and at two light quark masses (mπ ∼ 320 and 441 MeV) on the fine MILC
configurations with b ∼ 0.09 fm, with substantially less statistics on the fine ensembles. We
extract the s-wave scattering lengths from the two-particle energies, and we analyze the
six processes using SU(3) HBχ-PT. We find a rather conclusive lack of convergence in the
three-flavor chiral expansion. We then consider π+Σ+ and π+Ξ0 using SU(2) HBχ-PT and
we find that we are able to make reliable predictions of the scattering lengths at the physical
point. We find

aπ+Σ+ = −0.197 ± 0.017 fm ; (1)

aπ+Ξ0 = −0.098 ± 0.017 fm , (2)

where the errors encompass statistical and systematic uncertainties. The leading order χ-PT
(current algebra) predictions for the scattering lengths are given by [25]:

aπ+Σ+ = −0.2294 fm ; (3)

aπ+Ξ0 = −0.1158 fm . (4)

3



Particles Isospin Quark Content

π+Σ+ 2 uuud̄s

π+Ξ0 3/2 uud̄ss

K+p 1 uuuds̄

K+n 0 and 1 uudds̄

K0Σ+ 3/2 uud̄ss

K0Ξ0 1 ud̄sss

TABLE I: Particle content, isospin and valence quark structure of the meson-baryon
states calculated in this work. As is clear from the valence quark content, these meson-
baryon states have no annihilation diagrams.

Ultimately, either the chiral extrapolation should be performed after a continuum limit
has been taken, or one should use the mixed-action extension of HBχ-PT to perform the
chiral extrapolations [26, 27]. However, our results on the finer lattice spacing are statistics
limited and therefore not yet sufficiently accurate to make this a useful exercise. Further, the
explicit extrapolation formulae for the meson-baryon scattering lengths have not yet been
determined in mixed-action χ-PT. Despite these limitations, we expect the corrections from
finite lattice spacing to be small for two principle reasons. First, the meson-baryon scattering
lengths are protected by chiral symmetry and therefore the (approximate) chiral symmetry
of the domain wall valence fermions used in this work protects the scattering lengths from
additive renormalization, which can be explicitly seen in the construction of the mixed-action
baryon Lagrangian in Ref. [27]. In fact, as can be shown, the mixed-action corrections do
not appear until next-to-next-to leading order in the chiral expansion of the meson-baryon
scattering lengths. Second, our previous experience with this mixed-action lattice QCD
program leads us to expect that discretization effects will be well encompassed within the
overall uncertainties we quote. In our precise calculation of meson-meson scattering, the
predicted mixed-action corrections [28, 29] were smaller than the uncertainties on a given
ensemble [1, 3].

This paper is organized as follows. In section II we isolate the six meson-baryon processes
that have no annihilation diagrams and which are calculated in this work. We briefly review
the standard Lüscher method for extracting the scattering amplitude from two-particle en-
ergy levels in a finite volume in section III. Particulars regarding the mixed-action lattice
calculation and fitting methods are provided in section IV. Additional details can be found
in Ref. [30]. In section V we consider chiral extrapolations of the lattice data using SU(3)
HBχ-PT, and in section VI we analyze the pion-hyperon lattice data using SU(2) HBχ-PT.
Finally, we conclude in section VII.

II. MESON-BARYON SCATTERING PROCESSES

It is a straightforward exercise to construct the six elastic scattering channels involving
the lowest-lying octet mesons and baryons that do not have annihilation diagrams, and to
determine their isospin. The particle content, isospin, and valence quark content of these
meson-baryon states are shown in Table I. We adopt the notation of Ref. [14], denoting the

threshold T-matrix in the isospin basis as T
(I)
φB , where I is the isospin of the meson-baryon
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combination, φ is the meson, and B is the baryon. The six elastic meson-baryon scattering
processes that we consider are then in correspondence with the isospin amplitudes according
to

Tπ+Σ+ = T
(2)
πΣ ; Tπ+Ξ0 = T

(3/2)
πΞ ;

TK+p = T
(1)
KN ; TK+n =

1

2
(T

(1)
KN + T

(0)
KN) ;

TK0Σ+ = T
(3/2)
KΣ ; TK0Ξ0 = T

(1)
KΞ . (5)

These threshold T-matrices are related to the scattering lengths aφB through:

TφB = 4π

(

1 +
mφ

mB

)

aφB , (6)

where mφ is the meson mass and mB is the baryon mass.

III. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [31], which entails a measurement of one or more energy
levels of the two-particle system in a finite volume. For two particles with masses mφ and
mB in an s-wave, with zero total three momentum, and in a finite volume, the difference
between the energy levels and those of two non-interacting particles can be related to the
inverse scattering amplitude via the eigenvalue equation [31]

p cot δ(p) =
1

πL
S

(

pL

2π

)

, (7)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ
∑

j

1

|j|2 − η2
− 4πΛ . (8)

The sum in eq. (8) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [32]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [31]. In eq. (7), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from the sum of the rest
masses of the particle, ∆En, are related to the center-of-mass momentum pn, a solution of
eq. (7), by

∆En ≡ En − mφ − mB =
√

p2
n + m2

φ +
√

p2
n + m2

B − mφ − mB

=
p2

n

2µφB

+ ... , (9)

where µφB is the reduced mass of the meson-baryon system. In the absence of interactions
between the particles, |p cot δ| = ∞, and the energy levels occur at momenta p = 2πj/L,
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corresponding to single-particle modes in a cubic cavity with periodic boundary conditions.
Expanding eq. (7) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 2πa

µφBL3

[

1 + c1
a

L
+ c2

( a

L

)2
]

+ O
(

1

L6

)

, (10)

with

c1 =
1

π

|j|<Λ
∑

j6=0

1

|j|2 − 4Λ = −2.837297 , c2 = c2
1 − 1

π2

∑

j6=0

1

|j|4 = 6.375183 ,(11)

and a is the scattering length, defined by

a = lim
p→0

tan δ(p)

p
. (12)

As the finite-volume lattice calculation cannot achieve p = 0 (except in the absence of
interactions), in quoting a lattice value for the scattering length extracted from the ground-
state energy level, it is important to determine the error associated with higher-order range
corrections.

IV. LATTICE CALCULATION AND DATA ANALYSIS

In calculating the meson-baryon scattering lengths, the mixed-action lattice QCD scheme
was used in which domain-wall quark [33–37] propagators are generated from a smeared
source on nf = 2 + 1 asqtad-improved [38, 39] rooted staggered sea quarks [40]. To
improve the chiral symmetry properties of the domain-wall quarks, hypercubic-smearing
(HYP-smearing) [41–43] was used in the gauge links of the valence-quark action. In the sea-
quark sector, there has been significant debate regarding the validity of taking the fourth
root of the staggered fermion determinant at finite lattice spacing [44–57]. While there is no
proof, there are arguments to suggest that taking the fourth root of the fermion determinant
recovers the contribution from a single Dirac fermion. The results of this paper assume that
the fourth-root trick recovers the correct continuum limit of QCD.

The present calculations were performed predominantly with the coarse MILC lattices
with a lattice spacing of b ∼ 0.125 fm, and a spatial extent of L ∼ 2.5 fm. On these
configurations, the strange quark was held fixed near its physical value while the degenerate
light quarks were varied over a range of masses; see Table II and Ref. [30] for details.
Results were also obtained on a coarse MILC ensemble with a spatial extent of L ∼ 3.5 fm.
However, this data is statistics limited. In addition, calculations were performed on two fine
MILC ensembles at L ∼ 2.5 fm with b ∼ 0.09 fm. On the coarse MILC lattices, Dirichlet
boundary conditions were implemented to reduce the original time extent of 64 down to 32
and thus save a nominal factor of two in computational time. While this procedure leads to
minimal degradation of a nucleon signal, it does limit the number of time slices available for

2 In order to be consistent with the meson-baryon literature, we have chosen to use the “particle physics”

definition of the scattering length, as opposed to the “nuclear physics” definition, which is opposite in

sign.
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Ensemble bml bms bm
dwf
l bm

dwf
s 103 × bmres

a # of propagators

(i) 2064f21b676m007m050 0.007 0.050 0.0081 0.081 1.604 ± 0.038 1039 × 24

(ii) 2064f21b676m010m050 0.010 0.050 0.0138 0.081 1.552 ± 0.027 769 × 24

(iii) 2064f21b679m020m050 0.020 0.050 0.0313 0.081 1.239 ± 0.028 486 × 24

(iv) 2064f21b681m030m050 0.030 0.050 0.0478 0.081 0.982 ± 0.030 564 × 24

(v) 2864f21b676m010m050 0.010 0.050 0.0138 0.081 1.552 ± 0.027 128 × 8

(vi) 2896f21b709m0062m031 0.0062 0.031 0.0080 0.0423 0.380 ± 0.006 1001 × 8

(vii) 2896f21b709m0124m031 0.0124 0.031 0.0080 0.0423 0.380 ± 0.006 513 × 3

aComputed by the LHP collaboration for the coarse ensembles.

TABLE II: The parameters of the MILC gauge configurations and domain-wall propaga-
tors used in this work. The subscript l denotes light quark (up and down), and s denotes
the strange quark. The superscript dwf denotes the bare-quark mass for the domain-wall
fermion propagator calculation. The last column is the number of configurations times the
number of sources per configuration. Ensembles (i)-(iv) have L ∼ 2.5 fm and b ∼ 0.125 fm;
Ensemble (v) has L ∼ 3.5 fm and b ∼ 0.125 fm; Ensembles (vi),(vii) have L ∼ 2.5 fm and
b ∼ 0.09 fm.

fitting meson properties. By contrast, on the fine MILC ensembles, anti-periodic boundary
conditions were implemented and all time slices are available.

The correlation function that projects onto the zero momentum state for the meson-
baryon system is:

CφB(t) =
∑

x,y

〈φ†(t,x)B(t,y)φ(0,0)B(0,0)〉 . (13)

For instance, in the case of K+p, the interpolating operators for the K+ and the proton are:

φ(t,x) = K+(t,x) = s(t,x)γ5u(t,x) ;

Bi(t,x) = pi(t,x) = ǫabcu
a
i (t,x)

(

ubT(t,x)Cγ5d
c(t,x)

)

. (14)

The masses of the mesons and baryons are extracted using the assumed form of the large-
time behavior of the single particle correlators as a function of time. As t → ∞, the ground
state dominates, however, the contribution from fluctuations of the correlator due to the
dynamical quarks increases with respect to the ground state. The fluctuations with the
same quantum numbers as the correlator appear as noise in the signal. The single particle
states behave as:

Cφ,B(t) → A e−mφ,B t . (15)

In relatively large lattice volumes the energy difference between the interacting and non-
interacting meson-baryon states is a small fraction of the total energy, which is dominated
by the masses of the mesons and baryons [1]. In order to extract this energy difference the
ratio of correlation functions, GφB(t), is formed:

GφB(t) ≡ CφB(t)

Cφ(t)CB(t)
→

∞
∑

n=0

An e−∆En t . (16)
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Once ∆E is obtained, the scattering length can be calculated using eqs. (7) and (9), or, if
a << L, from eq. (10). For the meson-baryon scattering lengths calculated in this work, the
difference between the exact and perturbative eigen-equations is negligible.

We use a variety of fitting methods, including standard chi-square minimization fits to one
and two exponentials. Generalized effective energy plots are particularly useful for analyzing
the lattice data and for estimating systematic errors [9]. These plots are constructed by
taking the ratio of the correlators at times t, and t + nJ (where nJ is an integer):

meff
φ,B =

1

nJ

log

(

Cφ,B(t)

Cφ,B(t + nJ)

)

, ∆Eeff
φB =

1

nJ

log

(

GφB(t)

GφB(t + nJ)

)

. (17)

With nJ = 1 one recovers the standard effective mass and energy plots. Generalized effective
masses form a system of linear equations for each nJ over the time interval where the data
is fit. For instance, if the interval is given by ∆t = t2 − t1, then there is one equation for
meff at each tn within ∆t for 1 ≤ nJ ≤ ∆t at each t + nJ ≤ t2. The equations can be
solved for meff by casting them into the form of the so-called normal equation [58]. Since
each nJ constitutes a different effective mass plot, the number of degrees of freedom is
increased significantly. This method provides a fitting routine that is faster than standard
least-squares fitting. Additional details regarding the utility of generalized effective mass
and energy plots can be found in Ref. [59].

Our interpolating-operator at the source is constructed from gauge-invariantly-smeared
quark field operators, while at the sink, the interpolating operator is constructed from either
local quark field operators, or from the same smeared quark field operators used at the
source, leading to two sets of correlation functions. For brevity, we refer to the two sets
of correlation functions that result from these source and sink operators as smeared-point

(SP) and smeared-smeared (SS) correlation functions, respectively. By forming a linear
combination of the SP and SS correlation functions, C(SS) − αC(SP), we are able to remove
the first excited state, thus gaining early time slices for fitting [59]. This effect is illustrated
in Fig. 1, which is the effective ∆Eπ+Σ+ plot for coarse MILC ensemble (ii). We plot C(SS),
C(SP) and C(SS) −αC(SP) with α tuned to remove the first excited state. All effective masses
and energy splittings are plotted for coarse MILC ensemble (ii) in figs. 2 and 3.

All of the necessary quantities needed for extraction of the scattering lengths are contained
in Table III. The sum of meson and baryon masses is also tabulated at each quark mass.
Note that as π+Ξ0 and K0Σ+ carry the same quantum numbers and π+Ξ0 is lower in
energy, a priori we expect difficulties in extracting the K0Σ+ energy level. One might
expect that the π+Ξ0 state would be the lowest-lying energy level coupling to the K0Σ+

interpolating operator. However, within statistical and systematic errors, we find distinct
energy levels from the two interpolating operators consistent with coupling primarily to the
interpolating operator color-singlet constituents. Nevertheless, one should keep in mind that
this introduces a significant systematic in the lattice extractions of the K0Σ+ scattering
lengths. At the operational level, the appearance of the π+Ξ0 intermediate state in loop
diagrams for the K0Σ+ amplitude in HBχ-PT generates an imaginary contribution to the
scattering length.
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4 6 8 10 12 14 16
t/b

0

0.01

0.02

0.03
∆E

SS
SP
SS-αSP

π+Σ+
  C

(SS)
-αC

(SP)

n
J
 = 2

FIG. 1: Effective ∆Eπ+Σ+ plot for coarse MILC ensemble (ii) from correlation functions
C(SS), C(SP) and C(SS) − αC(SP). By taking the linear combination with α tuned to remove
the first excited state, earlier time slices are gained for fitting.

V. SU(3) HBχPT EXTRAPOLATION

A. Scattering Length Formulas

The scattering lengths of the six meson-baryon processes listed in eq. (5) are, to O(m3
π) in

SU(3) HBχ-PT [14, 15],

aπ+Σ+ =
1

4π

mΣ

mπ + mΣ

[

− 2mπ

f 2
π

+
2m2

π

f 2
π

C1 + Yπ+Σ+(µ) + 8h123(µ)
m3

π

f 2
π

]

; (18)

aπ+Ξ0 =
1

4π

mΞ

mπ + mΞ

[

− mπ

f 2
π

+
m2

π

f 2
π

C01 + Yπ+Ξ0(µ) + 8h1(µ)
m3

π

f 2
π

]

; (19)

aK+p =
1

4π

mN

mK + mN

[

− 2mK

f 2
K

+
2m2

K

f 2
K

C1 + YK+p(µ) + 8h123(µ)
m3

K

f 2
K

]

; (20)

aK+n =
1

4π

mN

mK + mN

[

− mK

f 2
K

+
m2

K

f 2
K

C01 + YK+n(µ) + 8h1(µ)
m3

K

f 2
K

]

; (21)

aK0Σ+ =
1

4π

mΣ

mK + mΣ

[

− mK

f 2
K

+
m2

K

f 2
K

C01 + YK0Σ+(µ) + 8h1(µ)
m3

K

f 2
K

]

; (22)
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bm
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 m010

χ2
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bm = 0.9009± 0.00134
n

J
 = 2

(e)

FIG. 2: Single particle effective mass plots for coarse MILC ensemble (ii). Here we choose
nJ = 2, and the linear combination C(SS) − αC(SP) is plotted. The inner shaded bands are
the jackknife errors of the fits to the effective masses, and the outer bands are the jack-
knife error and systematic error added in quadrature over the indicated window of time
slices.
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FIG. 3: Meson-baryon effective energy difference plots for coarse MILC ensemble (ii).
Here we choose nJ = 2, and the linear combination C(SS) − αC(SP) is plotted. The in-
ner shaded bands are the jackknife errors of the fits to the effective energy differences, and
the outer bands are the jackknife error and systematic error added in quadrature over the
indicated window of time slices.
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Quantity m007 (i) m010 (ii) m020 (iii) m030 (iv)

mπ 0.18384(31)(03) 0.22305(25)(08) 0.31031(38)(95) 0.37513(44)(13)

mk 0.36783(32)(42) 0.37816(26)(11) 0.40510(33)(37) 0.43091(66)(16)

mp 0.6978(61)(08) 0.7324(31)(10) 0.8069(22)(14) 0.8741(16)(05)

mΣ 0.8390(22)(03) 0.8531(19)(08) 0.8830(18)(17) 0.9213(13)(03)

mΞ 0.8872(13)(16) 0.9009(13)(10) 0.9233(18)(04) 0.9461(14)(08)

fπ 0.09257(16) 0.09600(14) 0.10208(14) 0.10763(32)

fK 0.10734(10) 0.10781(18) 0.10976(17) 0.11253(31)

∆EπΣ 0.0150(14)(08) 0.0148(08)(13) 0.0111(10)(08) 0.0100(10)(11)

∆EπΞ 0.00646(64)(98) 0.0062(05)(12) 0.00431(68)(43) 0.00421(76)(60)

∆EKp 0.0140(22)(30) 0.0146(15)(13) 0.0092(10)(51) 0.0087(16)(16)

∆EKn 0.0057(18)(16) 0.0051(14)(09) 0.0036(09)(12) 0.0028(10)(11)

∆EKΣ -0.0023(11)(24) -0.0005(09)(17) 0.0019(08)(11) 0.0005(14)(16)

∆EKΞ 0.0118(08)(13) 0.0125(05)(14) 0.0085(08)(31) 0.0086(16)(16)

aπΣ -2.12(16)(09) -2.36(09)(15) -2.30(15)(13) -2.36(18)(19)

aπΞ -1.08(09)(14) -1.19(09)(20) -1.08(15)(09) -1.20(18)(15)

aKp -2.80(32)(44) -2.95(21)(19) -2.3(0.2)(1.0) -2.27(31)(32)

aKn -1.41(37)(34) -1.33(30)(21) -1.05(22)(30) -0.89(27)(31)

aKΣ 0.9(0.4)(1.1) 0.17(31)(61) -0.60(23)(34) -0.16(51)(57)

aKΞ -2.62(13)(21) -2.77(08)(23) -2.18(15)(63) -2.29(30)(32)

mπ + mp 0.8817(61) 0.9555(31) 1.1172(23) 1.2492(18)

mπ + mΣ 1.0229(23) 1.0761(20) 1.1933(19) 1.2964(15)

mπ + mΞ 1.0710(14) 1.1240(14) 1.2336(19) 1.3212(16)

mK + mp 1.0657(61) 1.1106(31) 1.2119(23) 1.3050(19)

mK + mΣ 1.2069(23) 1.2312(20) 1.2881(19) 1.3522(16)

mK + mΞ 1.2550(14) 1.2791(15) 1.3284(19) 1.3770(17)

TABLE III: Lattice physical quantities from the four coarse MILC ensembles which enter
the analysis of the meson-baryon scattering lengths. The first error is statistical and the
second error is systematic due to fitting. All quantities are in lattice units.

aK0Ξ0 =
1

4π

mΞ

mK + mΞ

[

− 2mK

f 2
K

+
2m2

K

f 2
K

C1 + YK0Ξ0(µ) + 8h123(µ)
m3

K

f 2
K

]

, (23)

where we have defined C01 ≡ C0 + C1 and h123 ≡ h1 − h2 + h3, and the loop functions are
given by:

Yπ+Σ+(µ) =
m2

π

2π2f 4
π

{

− mπ

(

3

2
− 2 ln

mπ

µ
− ln

mK

µ

)

−
√

m2
K − m2

π arccos
mπ

mK

+
π

2

[

3F 2mπ − 1

3
D2mη

]}

; (24)
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Yπ+Ξ0(µ) =
m2

π

4π2f 4
π

{

− mπ

(

3

2
− 2 ln

mπ

µ
− ln

mK

µ

)

−
√

m2
K − m2

π

(

π + arccos
mπ

mK

)

+
π

4

[

3(D − F )2mπ − 1

3
(D + 3F )2mη

]}

; (25)

YK+p(µ) =
m2

K

4π2f 4
K

{

mK

(

− 3 + 2 ln
mπ

µ
+ ln

mK

µ
+ 3 ln

mη

µ

)

+2
√

m2
K − m2

π ln
mK +

√

m2
K − m2

π

mπ

− 3
√

m2
η − m2

K arccos
mK

mη

−π

6
(D − 3F )

[

2(D + F )
m2

π

mη + mπ

+ (D + 5F )mη

]}

; (26)

YK+n(µ) =
YK+p

2
+

3m2
K

8π2f 4
K

{

mK

(

ln
mπ

µ
− ln

mK

µ

)

+
√

m2
K − m2

π ln
mK +

√

m2
K − m2

π

mπ

+
π

3
(D − 3F )

[

(D + F )
m2

π

mη + mπ

+
1

6
(7D + 3F )mη

]}

; (27)

YK0Σ+(µ) =
m2

K

8π2f 4
K

{

− mK

(

3 + ln
mπ

µ
− 4 ln

mK

µ
− 3 ln

mη

µ

)

+
√

m2
K − m2

π

(

2i π − ln
mK +

√

m2
K − m2

π

mπ

)

− 3
√

m2
η − m2

K arccos
mK

mη

+
4

3
πD

[

− 2F
m2

π

mη + mπ

+ (D − 2F )mη

]}

; (28)

Y(1)

K0Ξ0
(µ) =

m2
K

4π2f 4
K

{

mK

(

− 3 + 2 ln
mπ

µ
+ ln

mK

µ
+ 3 ln

mη

µ

)

+2
√

m2
K − m2

π ln
mK +

√

m2
K − m2

π

mπ

− 3
√

m2
η − m2

K arccos
mK

mη

−π

6
(D + 3F )

[

2(D − F )
m2

π

mη + mπ

+ (D − 5F )mη

]}

. (29)

In what follows, we choose µ = Λχ = 4πfπ and evaluate fπ at its lattice physical value [60],
and we take mη from the Gell-Mann-Okubo formula. These choices modify the chiral ex-
pansion at O(m4

π) and are therefore consistent to the order we are working. Note that the
K0Σ+ loop function contains an imaginary part associated with the real π+Ξ0 intermediate
state. In the analysis that follows we consider only the real part of the K0Σ+ scattering
length. The first mixed-action modification to these HBχ-PT extrapolation formulae would
appear as corrections to these loop functions, YφB, and the corresponding counterterms
which absorb the scale dependence. Some of the mesons propagating in the loops would be
of a mixed valence-sea type, and thus the corresponding meson masses appearing in these
functions would be heavier by a known amount [61]. The precise form of the predicted cor-
rections would require a computation of the scattering processes with mixed-action/partially
quenched χ-PT.
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We choose our physical parameter set to be consistent with Ref. [17] (note that our decay
constant convention differs by

√
2). We take fπ = 130.7 MeV, mπ = 139.57 MeV, fK =

159.8 MeV, mK = 493.68 MeV, mN = 938 MeV, mΣ = 1192 MeV and mΞ = 1314 MeV. We
take the axial couplings D and F for coarse MILC ensembles (ii)-(iv) from the mixed-action
calculation of Ref. [62], and we use extrapolation for coarse MILC ensemble (i).

B. Extrapolation to the Physical Point

For purpose of fitting and visualization, it is useful to construct from the scattering lengths
the functions Γ(1,2) which are polynomials in mφ. For the π+Σ+, Kp, and K0Ξ0 processes
one defines3

Γ
(1)
LO ≡ −

2πaf 2
φ

mφ

(

1 +
mφ

mB

)

= 1 ; (30)

Γ
(1)
NLO ≡ −

2πaf 2
φ

mφ

(

1 +
mφ

mB

)

= 1 − C1mφ ; (31)

Γ
(1)
NNLO ≡ −

2πaf 2
φ

mφ

(

1 +
mφ

mB

)

+
f 2

φ

2mφ

YφB(Λχ) = 1 − C1mφ − 4h123(Λχ)m2
φ , (32)

and for the π+Ξ0, Kn, and K0Σ+ processes one defines

Γ
(2)
LO ≡ −

4πaf 2
φ

mφ

(

1 +
mφ

mB

)

= 1 ; (33)

Γ
(2)
NLO ≡ −

4πaf 2
φ

mφ

(

1 +
mφ

mB

)

= 1 − C01mφ ; (34)

Γ
(2)
NNLO ≡ −

4πaf 2
φ

mφ

(

1 +
mφ

mB

)

+
f 2

φ

mφ

YφB(Λχ) = 1 − C01mφ − 8h1(Λχ)m2
φ . (35)

Notice that the left-hand sides of these equations are given entirely in terms of lattice-
determined quantities, all evaluated under Jackknife, whereas the right-hand side provides
a convenient polynomial fitting function. Plots of ΓNLO formed from the lattice data (all
ensembles listed in table II) versus the Goldstone masses are given in Figure 4. We see
evidence in this plot that the fine and large-volume coarse data are statistically limited as
compared to the coarse data. Therefore, we include only the coarse data in our fits. The
fine data is, however, indicative that lattice-spacing effects are small.

In the three-flavor chiral expansion, we have an overdetermined system at both NLO and
NNLO. While there are six observables, there are two Low Energy Constants (LECs) at
NLO, C0 and C01, and two LECs at NNLO, h1 and h123. Fits of the LECs from each process

3 Here we use the standard notation, LO = leading order, NLO = next-to-leading order and so on.
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Quantity NLO fit each process NNLO fit π+Σ+,π+Ξ0

C1(π
+Σ+) 0.66(04)(11) GeV−1 3.51(18)(25) GeV−1

C01(π
+Ξ0) 0.69(06)(22) GeV−1 7.44(29)(69) GeV−1

C1(K
+p) 0.44(09)(23) GeV−1 -

C01(K
+n) 0.56(11)(27) GeV−1 -

C01(K
0Σ+) 1.55(31)(57) GeV−1 -

C1(K
0Ξ0) 0.50(06)(14) GeV−1 -

h1 - -0.59(08)(14) GeV−2

h123 - -0.42(10)(10) GeV−2

TABLE IV: SU(3) LECs fit from each process at NLO, and from π+Σ+, and π+Ξ0 at
NNLO. The first error in parentheses is statistical, and the second is the statistical and
systematic error added in quadrature.

at NLO are given in table IV and the corresponding values of the scattering lengths are
given in table V. At NLO, the LECs are of natural size, and with the exception of K0Σ+,
provide a consistent extraction within errors. Correspondingly, the scattering lengths, again
with the exception of K0Σ+, appear to deviate perturbatively from the LO values. The
perturbative behavior of the scattering lengths at NLO is evident from the plots of ΓNLO

versus the Goldstone masses given in Figure 5. Clearly the deviations of the lattice data
from unity are consistent with a perturbative expansion.

At NNLO the situation changes dramatically. This is clear from the plots of ΓNNLO versus
the Goldstone masses given in Figure 5. The shift of the value of Γ from NLO to NNLO is
dependent on the renormalization scale µ. With the choice µ = Λχ one would expect this
shift to be perturbative. However, this is not the case and therefore loop corrections are
very large at the scale Λχ. There are many strategies that one may take to fit the LECs in
the overdetermined system. Here we fit the LECs to the π+Σ+ and π+Ξ0 data, and then
use these LECs to predict the kaon processes. Therefore, in figure 5, only (a) and (b) are
fits. The fit LECs are given in table IV. While the NNLO LECs h1 and h123 appear to be of
natural size, the NLO LECs C0 and C01 are unnaturally large and therefore are countering
the large loop effects. The extrapolated π+Σ+ and π+Ξ0 scattering lengths are given in
table V and appear to be perturbative. Table V also gives the extrapolated kaon-baryon
scattering lengths with the LECs determined from π+Σ+ and π+Ξ0 data. The resulting
NNLO predictions deviate by at least 100% from the LO values. Other fitting strategies
lead to this same conclusion: the kaon-baryon scattering lengths are unstable against chiral
corrections in the three-flavor chiral expansion, over the range of light-quark masses that we
consider.

VI. SU(2) HBχPT EXTRAPOLATION

Given the poor convergence seen in the three-flavor chiral expansion due to the large loop
corrections, it is natural to consider the two-flavor theory with the strange quark integrated
out. In this way, πΣ and πΞ may be analyzed in an expansion in mπ with no fear of
corrections that scale as powers of mK . The detailed matching of LECs between the three-
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FIG. 4: Plots of ΓNLO versus the Goldstone masses for the six meson-baryon processes.
All lattice data is included.
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FIG. 5: Plots of ΓNLO and ΓNNLO versus the Goldstone masses. The line at Γ = 1 is the
leading order curve, and dotted line is the physical meson mass. The innermost error bar
is the statistical error and the outermost error bar is the statistical and systematic error
added in quadrature. The inner and outer filled bands correspond to the statistical and
systematic error, respectively, of the fits to the LECs at NLO and NNLO using π+Σ+,
and π+Ξ0 only, for the SU(3) case.
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Quantity LO (fm) NLO fit (fm) NLO (NNLO fit) (fm) NNLO (NNLO fit) (fm)

aπΣ -0.2294 -0.208(01)(03) -0.117(06)(08) -0.197(06)(08)

aπΞ -0.1158 -0.105(01)(04) 0.004(05)(11) -0.096(05)(12)

aKp -0.3971 -0.311(18)(44) 0.292(35)(48) -0.154(51)(63)

aKn -0.1986 -0.143(10)(27) 0.531(28)(68) 0.128(42)(87)

aKΣ -0.2143 -0.050(33)(60) 0.573(30)(73) 0.062(45)(94)

aKΞ -0.4406 -0.331(12)(31) 0.324(39)(54) -0.127(57)(70)

TABLE V: SU(3) extrapolated scattering lengths using the LECs from Table IV. The
first error in parentheses is statistical, and the second is the statistical and systematic er-
ror added in quadrature.

and two-flavor theories is described in detail in Ref. [17]. We make use of the formulation
of the πΣ and πΞ T-matrices from [17] to perform the two-flavor chiral extrapolations for
aπ+Σ+ , and aπ+Ξ0 . As pointed out in Ref. [17], there are two representations of the pion-
hyperon scattering lengths that are equivalent up to omitted higher orders in the chiral
expansion; one contains a chiral logarithm, and the other is purely a polynomial in mπ.
Using both forms provides a useful check on the systematics of the chiral extrapolation.

A. Scattering Length Formulas I

To O(m3
π) in the two-flavor chiral expansion, aπ+Σ+ and aπ+Ξ0 are given by [17]:

aπ+Σ+ =
1

4π

mΣ

mπ + mΣ

[

− 2mπ

f 2
π

+
2m2

π

f 2
π

Cπ+Σ+ +
m3

π

π2f 4
π

log
mπ

µ
+

2m3
π

f 2
π

hπ+Σ+(µ)

]

(36)

aπ+Ξ0 =
1

4π

mΞ

mπ + mΞ

[

− mπ

f 2
π

+
m2

π

f 2
π

Cπ+Ξ0 +
m3

π

2π2f 4
π

log
mπ

µ
+

m3
π

f 2
π

hπ+Ξ0(µ)

]

, (37)

where the explicit forms —in terms of Lagrangian parameters— of the LECs Cπ+Σ+ , hπ+Σ+ ,
Cπ+Ξ0 and hπ+Ξ0 are given in Ref. [17]. As in the three flavor case, the mixed-action modifi-
cation to the SU(2) scattering length formula would begin with corrections to the m3

π ln(mπ)
terms, with the mixed valence-sea pions having the known additive mass shift [61]. We again
choose µ = Λχ = 4πfπ and evaluate fπ at its lattice physical value. In analogy with the
three-flavor case, here we define

ΓLO ≡ 1 ; (38)

ΓNLO ≡ 1 − Cπ+Bmπ ; (39)

ΓNNLO ≡ 1 − Cπ+Bmπ − hπ+B(Λχ)m2
π , (40)

where B is either Σ+ or Ξ0. In figure 6 we give plots of ΓNLO and ΓNNLO versus the Goldstone
masses for the two-flavor case. Clearly the deviations of Γ from unity are consistent with a
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NLO fit NNLO fit

Cπ+Σ+ 0.66(04)(11) GeV−1 1.98(17)(24) GeV−1

Cπ+Ξ0 0.69(06)(22) GeV−1 2.01(24)(68) GeV−1

hπ+Σ+ - -0.65(36)(40) GeV−2

hπ+Ξ0 - -0.6(0.5)(1.1) GeV−2

TABLE VI: SU(2) LECs fit from each process at NLO and at NNLO. The first error in
parentheses is statistical, and the second is the statistical and systematic error added in
quadrature.

Quantity LO (fm) NLO (fm) NLO (NNLO fit) (fm) NNLO (fm)

aπΣ -0.2294 -0.208(01)(03) -0.166(05)(08) -0.197(06)(08)

aπΞ -0.1158 -0.105(01)(04) -0.083(04)(11) -0.098(05)(12)

TABLE VII: SU(2) extrapolated scattering lengths using the LECs from Table VI. The
first error in parentheses is statistical, and the second is the statistical and systematic er-
ror added in quadrature.

perturbative expansion at both NLO and NNLO. Notice that the loop corrections are much
smaller at the scale Λχ than in the three-flavor case. The fit LECs are given in table VI and
indeed all extracted LECs are of natural size. The extrapolated π+Σ+ and π+Ξ0 scattering
lengths are given in table VII. The results are consistent with what was found in the three-
favor extrapolation. The NLO and NNLO LECs are highly correlated in the NNLO fit.
Figure 8 shows the 68% and 95% confidence interval error ellipses in the h-C plane for both
π+Σ+ and π+Ξ0. Exploring the full 95% confidence interval error ellipse in the h-C plane
yields

aπ+Σ+ = −0.197 ± 0.017 fm ; (41)

aπ+Ξ0 = −0.098 ± 0.017 fm . (42)

These are the numbers that we quote as our best determinations of the pion-hyperon scat-
tering lengths.

B. Scattering Length Formulas II

Ref. [17] makes the interesting observation that replacing fπ with its chiral limit value, f ,
yields:

aπ+Σ+ =
1

2π

mΣ

mπ + mΣ

[

− mπ

f 2
+

m2
π

f 2
Cπ+Σ+ +

m3
π

f 2
h′

π+Σ+

]

, h′
π+Σ+ =

4

f 2
ℓr
4 + hπ+Σ+ ;(43)

aπ+Ξ0 =
1

4π

mΞ

mπ + mΞ

[

− mπ

f 2
+

m2
π

f 2
Cπ+Ξ0 +

m3
π

f 2
h′

π+Ξ0

]

, h′
π+Ξ0 =

4

f 2
ℓr
4 + hπ+Ξ0 , (44)
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NLO fit NNLO fit

Cπ+Σ+ 1.28(09)(11) GeV−1 1.90(10)(17) GeV−1

Cπ+Ξ0 1.84(23)(25) GeV−1 1.93(12)(48) GeV−1

h
′

π+Σ+ - -1.33(21)(26) GeV−2

h
′

π+Ξ0 - -1.36(27)(75) GeV−2

TABLE VIII: SU(2) LECs fit from each process at NLO and at NNLO. The first error in
parentheses is statistical, and the second is the statistical and systematic error added in
quadrature.

Quantity LO (fm) NLO (fm) NLO (NNLO fit) (fm) NNLO (fm)

aπΣ -0.2294 -0.212(03)(04) -0.190(04)(06) -0.197(04)(09)

aπΞ -0.1158 -0.106(04)(05) -0.095(02)(09) -0.102(02)(09)

TABLE IX: SU(2) extrapolated scattering lengths using the LECs from Table VIII. The
first error in parentheses is statistical, and the second is the statistical and systematic er-
ror added in quadrature.

where ℓr
4 is the LEC which governs the pion mass dependence of fπ [63]. Note that the chiral

logs have canceled and therefore in this form, valid to order m3
π in the chiral expansion, the

scattering lengths have a simple polynomial dependence on mπ. Taking the standard value
f = 122.9 MeV [17, 63] and refitting the LECs yields the results tabulated in table VIII.
The extrapolated π+Σ+ and π+Ξ0 scattering lengths are given in table IX. These results
are clearly consistent with what was found in the two-flavor extrapolation with the chiral
logarithm explicit. Figure 9 shows the 68% and 95% confidence interval error ellipses in the
h-C plane for both π+Σ+ and π+Ξ0. Exploring the full 95% confidence interval error ellipse
in the h-C plane yields

aπ+Σ+ = −0.197 ± 0.011 fm ; (45)

aπ+Ξ0 = −0.102 ± 0.004 fm . (46)

Comparison of these determinations with those of eq. (42) give an estimate of the systematic
error due to truncation of the chiral expansion at order m3

π. We have also “pruned” the data;
that is, we have redone all fits omitting the heaviest mass ensemble. While this procedure
inflates the errors, we see very little shift in the central values.

In order to plot the scattering length as a function of mπ, we define

aπ+Σ+ = aπ+Σ+

(

mπ + mΣ

mΣ

)

=
1

2π

(

−mπ

f 2
+

m2
π

f 2
Cπ+Σ+ +

m3
π

f 2
h′

π+Σ+

)

; (47)

aπ+Ξ0 = aπ+Ξ0

(

mπ + mΞ

mΞ

)

=
1

4π

(

−mπ

f 2
+

m2
π

f 2
Cπ+Ξ0 +

m3
π

f 2
h′

π+Ξ0

)

. (48)

In Figure 7 we plot the scattering lengths versus the pion mass. The shaded bands in
these plots correspond to the standard error in the determination of the LECs, as given in
table VIII.
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FIG. 6: ΓNLO, ΓNNLO plots for the π+Σ+, and π+Ξ0 processes as a function of the pion
mass. The line at Γ = 1 is the leading order curve, and the dotted line is the physical
pion mass. The innermost error bar is the statistical error and the outermost error bar is
the statistical and systematic error added in quadrature. The inner and outer filled bands
correspond to the statistical and systematic error, respectively, of the fits to the LECs at
NLO and NNLO using π+Σ+, and π+Ξ0 for the SU(2) case.

Additional systematic uncertainties arising from the specific lattice formulation that we
employ are discussed in detail in Ref. [1], and are expected to be well encompassed by our
error bars. As discussed in section III, there is a systematic error in extracting the scattering
length from the phase shift. We find that range corrections affect the scattering length at
the 5% level for π+Σ+, and at the 1% level for π+Ξ0. Finally, we reiterate that there are
unquantified systematic errors due to finite-volume and lattice-spacing effects, however these
uncertainties are likely encompassed by our quoted errors.

VII. CONCLUSIONS

In this paper we have presented the first fully-dynamical lattice QCD calculation of meson-
baryon scattering. While the phenomenologically most-interesting case of pion-nucleon scat-
tering involves annihilation diagrams and therefore requires more resources than we currently
have available, we have calculated the ground-state energies of π+Σ+, π+Ξ0, K+p, K+n,
K0Σ+, and K0Ξ0, which involve no annihilation diagrams.

An analysis of the scattering lengths of these two-body systems using HBχPT has led us to
conclude that the three-flavor chiral expansion does not converge over the range of light quark
masses that we investigate. While the kaon-baryon scattering lengths appear perturbative at
NLO, the large kaon loops destroy convergence at NNLO. Therefore, we do not quote values
for the kaon-baryon scattering lengths at the physical point. On the other hand, the π+Σ+

and π+Ξ0 scattering lengths appear to have a well-controlled chiral expansion in two-flavor
HBχPT. Our results, aπ+Σ+ = −0.197 ± 0.017 fm, and aπ+Ξ0 = −0.098 ± 0.017 fm, deviate
from the LO (current algebra) predictions at the one- and two-sigma level, respectively. We
look forward to confirmation of these predictions from other lattice QCD calculations and
possibly from future experiments.
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FIG. 7: a plots for the π+Σ+, and π+Ξ0 processes as a function of the pion mass. The
dark, green line is the leading order curve, and the red, dotted line is the physical pion
mass. The innermost error bar is the statistical error and the outermost error bar is the
statistical and systematic error added in quadrature. The filled bands are the fits to the
LECs in the SU(2) case at NNLO as in eqs. (47), and (48).
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FIG. 8: The 68% (light) and 95% (dark) confidence interval error ellipses for fits for the
π+Σ+ (left), and π+Ξ0 (right) processes using eqs. (36) and (37).

The HBχPT analyses performed in this work lead to a general conclusion about con-
vergence in the three-flavor chiral expansion. As the pion masses considered in the lattice
calculation are comparable to the physical kaon mass, the distinct convergence patterns of
the two- three-flavor chiral expansions found in this work are suggestive that the breakdown
of the three-flavor chiral is not due to the relative largeness of the strange-quark mass as
compared to the light quark masses, but rather due to some other enhancement in the coef-
ficients of the loop contributions, possibly related to a scaling with powers of nf , the number
of flavors.

While in this paper we have not considered the lowest-lying baryon decuplet, one interest-
ing process for future study is the π−Ω− system. It does not involve disconnected diagrams
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FIG. 9: The 68% (light) and 95% (dark) confidence interval error ellipses for fits for the
π+Σ+ (left), and π+Ξ0 (right) processes using eqs. (43) and (44).

since the pions have no valence quarks with the same flavor as the Ω− constituents. It has
been argued that there is a bound state [64] in this channel and therefore it would be of
interest to determine whether this state appears bound on the lattice at the available quark
masses.
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